Бюджетное общеобразовательное учреждение Вологодской области «Вологодская кадетская школа-интернат имени Белозерского полка»

Принята на заседании педагогического совета (протокол от 31.08.2023 №1)

Утвет приказом директора 2023 № 102

Директоры колто

В.Н.Корепин

Рабочая программа по астрономии среднего общего образования 11 классы (ФГОС СОО)
Новая редакция

Автор-составитель: методическое объединение учителей предметов естественно-математического цикла БОУ ВО «Вологодская кадетская школа-интернат им. Белозерского полка».

Стандарт: федеральный государственный образовательный стандарт среднего общего образования (ФГОС СОО).

Программы:

- Программа по астрономии для общеобразовательных учреждений «Астрономия 11 класс» (Е. К. Страут, 2016 г.).

Учебники:

- учебник «Астрономия. 11 класс», Б. А. Воронцов-Вельяминов, Е. К. Страут, М. Дрофа, 2019 г.

Количество часов:

11 класс-33 часа

Планируемые результаты изучения учебного предмета.

Личностными результатами освоения курса астрономии в средней (полной) школе являются:

- формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеурочной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

Метапредметные результаты освоения программы предполагают:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный, классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
- анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;
- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

Предметные результаты изучения астрономии в средней (полной) школе представлены в содержании курса по темам.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания

не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Содержание учебного предмета

Что изучает астрономия. Наблюдения — основа астрономии (2 ч)

Астрономия, ее связь с другими науками. Структура масштабы Вселенной. Особенности астрономических методов исследования. Телескопы и радиотелескопы. Всеволновая астрономия.

Предметные результаты освоения темы позволяют:

- воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

Практические основы астрономии (5 ч)

- 1. Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь.
- 2. Предметные результаты изучения данной темы позволяют:
- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд.

Строение Солнечной системы (7 ч)

- 1. Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира. Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе.
- 2. Предметные результаты освоения данной темы позволяют:
- воспроизводить исторические сведения о становлении развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;

- объяснять причины возникновения приливов на Земле возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Природа тел Солнечной системы (7 ч)

- 1. Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна двойная планета. Ис-следования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты.
- 2. Предметные результаты изучение темы позволяют:
- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет:
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Солнце и звезды (5 ч)

- 1. Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр—светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды маяки Вселенной. Эволюция звезд различной массы.
- 2. Предметные результаты освоения темы позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- 1. характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек Новых и Сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Строение и эволюция Вселенной (5 ч)

- 1. Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение.
- 2. Предметные результаты изучения темы позволяют:
- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;

- определять расстояние до галактик на основе закона Хаббла; по светимости Сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Жизнь и разум во Вселенной (2 ч)

- 1. Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.
- 2. Предметные результаты позволяют систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной.

Реализация воспитательного потенциала урока:

- установление доверительных отношений между учителем и его учениками, способствующих позитивному восприятию учащимися требований и просьб учителя, привлечению их внимания к обсуждаемой на уроке информации, активизации их познавательной деятельности;
- побуждение школьников соблюдать на уроке общепринятые нормы поведения, правила общения со старшими (учителями) и сверстниками (школьниками), принципы учебной дисциплины и самоорганизации;
- привлечение внимания школьников к ценностному аспекту изучаемых на уроках явлений, организация их работы с получаемой на уроке социально значимой информацией инициирование ее обсуждения, высказывания учащимися своего мнения по ее поводу, выработки своего к ней отношения;
- использование воспитательных возможностей содержания предмета через демонстрацию детям примеров ответственного, гражданского поведения, проявления человеколюбия и добросердечности, через подбор соответствующих текстов для чтения, задач для решения, проблемных ситуаций для обсуждения в классе;
- применение на уроке интерактивных форм работы учащихся: интеллектуальных игр, стимулирующих познавательную мотивацию школьников; дискуссий, которые дают учащимся возможность приобрести опыт ведения конструктивного диалога; групповой работы или работы в парах, которые учат школьников командной работе и взаимодействию с другими детьми;
- включение в урок игровых моментов, которые помогают поддержать мотивацию детей к получению знаний, налаживанию позитивных межличностных отношений в классе, помогают установлению доброжелательной атмосферы во время урока;
- организация шефства мотивированных и эрудированных учащихся над одноклассниками нуждающимися в помощи, дающего школьникам социально значимый опыт сотрудничества;
 - инициирование и поддержка исследовательской деятельности школьников в

рамках реализации ими индивидуальных и групповых исследовательских проектов, что даст школьникам возможность приобрести навык самостоятельного решения теоретической проблемы, навык генерирования и оформления собственных идей, навык уважительного отношения к чужим идеям, оформленным в работах других исследователей, навык публичного выступления перед аудиторией, аргументирования и отстаивания своей точки зрения.

Тематическое планирование.

Nº	Наименование тем, разделов	Всего	В том чи	сле
п/п		часов	Уроки	K/P
1.	Астрономия, ее значение и связь с другими науками	2	2	-
2.	Практические основы астрономии	5	5	-
3.	Строение Солнечной системы	7	6	1
4.	Природа тел Солнечной системы	7	6	1
5.	Солнце и звезды	5	4	1
6.	Строение и эволюция вселенной	5	4	1
7.	Жизнь и разум во вселенной	2	1	1
8.	Итого	33	28	5

№ и тема урока	Содержание материала	Формы і обучения	
1. АСТРОНОМИЯ, ЕЕ ЗНАЧЕНИЕ И СВЯЗЬ С ДРУГИМИ НАУКА			
1. Что изучает астрономия.	Астрономия, со связь с другими науками. Развитие астрономии было вызвано практическими потребностями человека, начиная с глубокой древности. Астрономия, математика и физика развивалась в тесной	Беседа. Работа с учебника и илль	

	связи друг с другом. Структура и масштабы Вселенной.	
2. Наблюдения — основа астрономии.	Наземные и космические приборы и методы исследования астрономических объектов. Телескопы и радиотелескопы. Всеволновая астрономия.	Устный опрос. І
	2. ПРАКТИЧЕСКИЕ ОСНОВЫ АСТРОНО	ОМИИ (5 ч)
1. Звезды и созвездия. Небесные координаты. Звездные карты. Практическая работа «Определение горизонтальных небесных координат».	Звездная величина как характеристика освещенности, создаваемой звездой. Согласно шкале звездных величин разность на 5 величин, различие в потоках света в 100 раз. Экваториальная система координат: прямое восхождение и склонение. Использование звездной карты для определения объектов, которые можно наблюдать в заданный момент времени.	Фронтальный ог Беседа. Практич
2. Видимое движение звезд на различных географических широтах.	Высота полюса мира над горизонтом и ее зависимость от географической широты места наблюдения. Небесный меридиан. Кульминация светил. Определение географической широты по измерению высоты звезд в момент их кульминации.	Фронтальный оп Беседа. Работа с текстом
3. Годичное движение Солнца. Эклиптика. Практическая работа «Определение экваториальных небесных координат».	Эклиптика и зодиакальные созвездия. Наклон эклиптики к небесному экватору. Положение Солнца на эклиптике в дни равноденствий и солнцестояний. Изменение в течение года продолжительности дня и ночи на различных географических широтах.	Индивидуальны Беседа. Практич
4. Движение и фазы Луны. Затмения Солнца и Луны.	Луна — ближайшее к Земле небесное тело, ее единственный естественный спутник. Период обращения Луны вокруг Земли и вокруг своей оси — сидерический (звездный) месяц. Синодический месяц — период полной смены фаз Луны. Условия наступления солнечных и лунных затмений. Их периодичность. Полные, частные и кольцеобразные затмения Солнца. Полные и частные затмения Луны. Предвычисление будущих затмений.	Фронтальный ог Беседа.
5. Время и календарь.	Точное время и определение географической долготы. Часовые пояса. Местное и поясное, летнее и зимнее время. Календарь — система счета длительных промежутков времени. История календаря. Високосные годы. Старый и новый стиль.	Тестирование. Б
	<u> </u>	

	3. СТРОЕНИЕ СОЛНЕЧНОЙ СИСТЕ	МЫ (7 ч)
1. Развитие представлений о строении мира.	Геоцентрическая система мира Аристотеля- Птолемея. Система эпициклов и дифферентов для объяснения петлеобразного движения планет. Создание Коперником гелиоцентрической системы мира. Роль Галилея в становлении новой системы мира.	Индивидуальны Беседа.
2. Конфигурации планет. Синодический период.	Внутренние и внешние планеты. Конфигурации планет: противостояние и соединение. Периодическое изменение условий видимости внутренних и внешних планет. Связь синодического и сидерического (звездного) периодов обращения планет.	Тестирование. Е
3. Законы движения планет Солнечной системы. Практическая работа «Решение задач по теме «Конфигурация планет».	Три закона Кеплера. Эллипс. Изменение скорости движения планет по эллиптическим орбитам. Открытие Кеплером законов движения планет — важный шаг на пути становления механики. Третий закон — основа для вычисления относительных расстояний планет от Солнца.	Фронтальный он Практическая ра
4. Определение расстояний и размеров тел в Солнечной системе.	Размеры и форма Земли. Триангуляция. Горизонтальный параллакс. Угловые и линейные размеры тел Солнечной системы.	Индивидуальны Беседа.
5. Практическая работа с планом Солнечной системы.	План Солнечной системы в масштабе 1 см к 30 млн км с указанием положения планет на орбитах согласно данным «Школьного астрономического календаря» на текущий учебный год.	Практическая ра
6. Открытие и применение закона всемирного тяготения.	Подтверждение справедливости закона тяготения для Луны и планет. Возмущения в движении тел Солнечной системы. Открытие планеты Нептун. Определение массы небесных тел. Масса и плотность Земли. Приливы и отливы	Фронтальный оп Беседа.
7. Движение искусственных спутников, космических аппаратов (КА) в Солнечной системе.	Время старта КА и траектории полета к планетам и другим телам Солнечной системы. Выполнение маневров, необходимых для посадки на поверхность планеты или выход на орбиту вокруг нее.	Индивидуальны Беседа.
	4. ПРИРОДА ТЕЛ СОЛНЕЧНОЙ СИСТ	ЕМЫ (7ч)

1. Контрольная работа.	Контрольная работа по итогам 1 полугодия (15	
Солнечная система как комплекс тел, имеющих общее происхождение.	мин.). Гипотеза о формировании всех тел Солнечной системы в процессе длительной эволюции холодного газопылевого облака. Объяснение их природы на основе этой гипотезы.	Контрольная раб Беседа.
2. Анализ выполнения контрольной работы. Земля и Луня — двойная планета.	Краткие сведения о природе Земли. Условия на поверхности Луны. Два типа лунной поверхности — моря и материки. Горы, кратеры и другие формы рельефа. Процессы формирования поверхности Луны и ее рельефа. Результаты исследований, проведенных автоматическими аппаратами и астронавтами. Внутреннее строение Луны. Химический состав лунных пород. Обнаружение воды на Луне. Перспективы освоения Луны.	Фронтальный оі Беседа.
3. Природа планет земной группы. Практическая работа «Составление сравнительных характеристик планет земной группы».	Сходство внутреннего строения и химического состава планет земной группы. Рельеф поверхности. Вулканизм и тектоника. Метеоритные кратеры. Особенности температурных условий на Меркурии, Венере и Марсе. Отличия состава атмосферы Земли от атмосфер Марса и Венеры. Сезонные изменения в атмосфере и на поверхности Марса. Состояние воды на Марсе в прошлом и в настоящее время. Эволюция природы планет. Поиски жизни на Марсе.	Беседа. Практич
4. Урок-дискуссия «Парниковый эффект — польза или вред?».	Обсуждение различных аспектов проблем, связанных с существованием парникового эффекта и его роли в формировании и сохранении уникальной природы Земли.	Индивидуальны Беседа.
5. Планеты-гиганты, их спутники и кольца.	Химический состав и внутреннее строение планет-гигантов. Источники энергии в недрах планет. Облачный покров и атмосферная циркуляция. Разнообразие природы спутников. Сходство природы спутников с планетами земной группы и Луной. Наличие атмосфер у крупнейших спутников. Строение и состав колец.	Фронтальный ог Беседа.
6. Малые тела Солнечной системы (астероиды, карликовые планеты и кометы).	Астероиды главного пояса. Их размеры и численность. Малые тела пояса Койпера. Плутон и другие карликовые планеты. Кометы. Их строение и состав. Орбиты комет. Общая численность комет. Кометное облако Оорта. Астероидно-кометная опасность. Возможности	Тестирование. Б

	и способы ее предотвращения.	
7. Метеоры, болиды, метеориты. Контрольная работа по теме «Природа тел Солнечной системы».	Одиночные метеоры. Скорости встречи с Землей. Небольшие тела (метеороиды). Метеорные потоки, их связь с кометами. Крупные тела. Явление болида, падение метеорита. Классификация метеоритов: железные, каменные, железокаменные. Контрольная работа по теме «Природа тел Солнечной системы» (20 мин.).	Беседа. Контрольная ра
	5. СОЛНЦЕ И ЗВЕЗДЫ (5 ч)	
1. Анализ выполнения контрольной работы. Солнце, состав и внутреннее строение.	Источник энергии Солнца и звезд — термоядерные реакции. Перенос энергии внутри Солнца. Строение его атмосферы. Грануляция. Солнечная корона. Обнаружение потока солнечных нейтрино. Значение этого открытия для физики и астрофизики.	Беседа
2. Солнечная активность и ее влияние на Землю.	Проявления солнечной активности: солнечные пятна, протуберанцы, вспышки, корональные выбросы массы. Потоки солнечной плазмы. Их влияние на состояние магнитосферы Земли. Магнитные бури, полярные сияния и другие геофизические явления, влияющие на радиосвязь, сбои в линиях электропередачи. Период изменения солнечной активности.	Фронтальный оп Беседа
3. Физическая природа звезд. Массы и размеры звезд.	Звезда — природный термоядерный реактор. Светимость звезды. Многообразие мира звезд. Их спектральная классификация. Звездыгиганты и звезды-карлики. Диаграмма «спектр — светимость». Двойные и кратные звезды. Звездные скопления. Их масса, плотность, состав и возраст. Модели звезд.	Тестирование. Беседа Индивидуальны
4. Переменные и нестационарные звезды. Контрольная работа по теме «Солнце и звезды».	Цефеиды — природные автоколебательные системы. Зависимость «период — светимость». Затменно-двойные звезды. Вспышки Новых — явление в тесных системах двойных звезд. Открытие «экзопланет» — планет и планетных систем вокруг других звезд. Контрольная работа по теме «Солнце и звезды» (15 мин.).	Беседа. Контрол

5. Анализ выполнения контрольной работы. Эволюция звезд. Практическая работа «Решение задач по теме «Характеристики звезд».	Зависимость скорости и продолжительности эволюции звезд от их массы. Вспышка Сверхновой — взрыв звезды в конце ее эволюции. Конечные стадии жизни звезд: белые карлики. нейтронные звезды (пульсары), черные дыры. 6. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕН	Беседа. Практич ІНОЙ (5 ч)	
1. Наша Галактика.	Размеры и строение Галактики. Расположение и движение Солнца. Ядро и спиральные рукава Галактики. Вращение Галактики и проблема «скрытой массы».	Беседа.	
2. Наша Галактика.	Радиоизлучение межзвездного вещества. Его состав. Области звездообразования. Обнаружение сложных органических молекул. Взаимосвязь звезд и межзвездной среды. Планетарные туманности — остатки вспышек Сверхновых звезд.	Тестирование. Беседа.	
3. Другие звездные системы — галактики.	Спиральные, эллиптические и неправильные галактики. Их отличительные особенности, размеры, масса, количество звезд. Сверхмассивные черные дыры в ядрах галактик. Квазары и радиогалактики. Взаимодействующие галактики. Скопления и сверхскопления галактик.		
4. Космология начала XX в. 5. Основы современной космологии.	Общая теория относительности. Стационарная Вселенная А. Эйнштейна. Вывод Л. Л. Фридмана о нестационарности Вселенной. «Красное смешение» в спектрах галактик и закон Хаббла. Расширение Вселенной происходит однородно и изотропно. Гипотеза Г. А. Гамова о горячем начале Вселенной, ее обоснование и подтверждение. Реликтовое излучение. Теория Большого взрыва. Образование химических элементов. Формирование галактик и звезд. Ускорение рас ширения Вселенной. «Темная энергия» и антитя- готение.	Беседа.	
7. ЖИЗНЬ И РАЗУМ ВО ВСЕЛЕННОЙ (2 ч).			
1. Урок-конференция «Одиноки ли мы во Вселенной?»	Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности радиоастрономии и космонавтики для связи с другими	Конференция.	

	цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.	
2. Промежуточная аттестация.	Контрольная работа по итогам года.	Контрольная ра